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Abstract 
 
The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 

4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the sta-
bility of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of 
the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint 
can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the 
filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly 
decrease the sheet’s susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with 
stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost 
impossible. 
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1. Introduction 

The industrial applications of laser have increasingly be-
come widespread [1-4]. However, porosity poses a serious 
problem in the high power laser welding of aluminum alloy 
because it deteriorates mechanical properties, particularly, 
tensile strength and elongation. Numerous studies have been 
carried out on the formation of porosity in high power laser 
welding [5-14]. Matsunawa, et al. [15] conducted systematic 
studies on the mechanism of porosity formation in CW CO2 
laser welding using high speed optical and X-ray transmission 
methods. They estimated that the local evaporation of the 
metal on the keyhole front wall was the prime reason for the 
formation of large bubbles; the bubbles were trapped by the 
solidifying wall during the floating up and remained in a state of 
porosity. Gas analysis showed that the major gas in the large 
cavities was a shielding gas, confirming that the cavities were 
primarily formed by metal vapor together with the swirled shiel-
ding gas and air. Compared with laser autogenous welding, 
wire was added into the laser welding process (i.e., laser weld-
ing with filler wire), which complicates the dynamics of the 
keyhole and molten pool, thus increasing the probability of 
porosity formation. This necessitates an understanding of the 

formation mechanism of porosity and its suppression meas-
ures in order to obtain a good welded joint during laser weld-
ing with filler wire. Numerous studies exist on this topic [16-
21], but reports on the formation mechanism of porosity are 
rarely discussed. In this work, the mechanism of porosity for-
mation and its suppression methods were studied using a 4 
kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 
filler.  
 

2. Experimentations 

The base material used in this study was 5A06 aluminum 
alloy with a thickness of 2.0 and 4.0 mm. SAl-Mg5 aluminum 
wire (1.0 mm in diameter) was used as filler wire. The chemi-
cal compositions of the base material and filler wire are listed 
in Table 1. The welding direction was along the rolling direc-
tion of the aluminum alloy plate (150 mm × 100 mm). Argon 
gas was used as shielding gas with a flow rate of 16 l/min.  

Experiments were carried out by YLR-4000 CW Ytterbium 
Fiber Laser and a VR7000 Fronius wire feeder. The filler wire 
was supplied just ahead of the laser beam at an angle of 30° 
with respect to the normal surface to prevent the laser from 
leaking through the gap of the butt joint. The focus point of 
the laser beam was set at the substrate surface (Fig. 1). The 
parameters of the laser welding experiments are shown in 
Table 2.   
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3. Results and discussion  

3.1 Porosities distribution in the joints  

Porosity distribution in the joints and their corresponding 

welding parameters are shown in Fig. 2 and Table 3, respec-
tively. 

In Fig. 2, No. 1 and No. 2 show that large porosities exist in 
the joints both with and without filling wire when the keyhole 
did not penetrate the plate. Moreover, the amount of porosity 
greatly increased when the filler wire was added. This indi-
cates that the introduction of the filler wire increased suscepti-
bility to porosity when the keyhole did not penetrate the plate. 
There are two explanations for this. First, the filling wire in-
creased the instability of the keyhole and weld pool. The fluc-
tuations of the filler wire in terms of speed and/or feed-in posi-
tion was inevitable because the wire feeding system cannot be 
absolutely stable. Therefore, the laser energy used to generate 
the keyhole and weld pool result in a corresponding fluctuation 
in the laser welding with filler wire, which can lead to the in-
stability of keyhole and weld pool. Secondly, the filler wire had 
a larger specific area compared with the base material, which 
can lead to more impurity. Oxide and hydride are dragged into 
the molten pool, which led to increased porosity. However, the 
size of maximal porosity in No. 2 (with filling wire) became 
smaller than in No. 1 (without filling wire). This phenomenon 
can be attributed to the fact that a laser beam was used to melt 
the filler wire, which could have reduced molten pool overheat-
ing, and consequently caused the size of the maximal porosity 
existing in the molten pool to become smaller.  

The amount of porosity decreased when a full penetration 
bead was obtained. However, a much large porosity could still 
exist in the joints if the welding conditions have not been con-
trolled properly (see No. 4 in Fig. 2). Porosity can be com-
pletely avoided when a gap of 0.4 mm was prefabricated for 
the butt joint of a 4 mm sheet or when the sheet thickness is 
2.0 mm (see No. 5 and No. 6 in Fig. 2). Under these two con-
ditions, the weld penetration depths were uniform and greater 
than the thickness of the test panel. Further discussions on this 
topic shall be presented in the next section.  

 
3.2 Micrographs analysis 

The scanning electron microscope (SEM) observations (Fig. 
3) show that porosity can be classified into two broad catego-
ries based on size and microscopic features. The first category 
is comprised of large and irregular beads (Fig. 3(b)), which are 

Table 1. Composition of 5A06 and SAl-Mg5 (%). 
 

Compositions Si Fe Cu Mn Mg Zn Ti Al

5A06 (Wt. %) 0.4 0.4 0.1 0.5-
0.8 

5.8-
6.8 0.2 0.02-

0.1 Bal.

SAl-Mg5 
(Wt. %) 0.4 0.4 - 0.2-

0.6 
4.7-
5.7 - 0.05-

0.2 Bal.

 
Table 2. Parameters of laser welding condition. 
 

Laser power 
P (kW) 

Wire feed speed 
VF/ (m/min) 

Welding speed 
VW/ (m/ min) 

Sheet thickness
 (mm) 

2.6-4.0 0.0-10.0 1.2-2.0 2.0, 4.0 

 
Table 3. Welding procedures. 
 

No. Laser 
power P (kW) 

Welding 
speed VW (m/min)

Wire feed 
speed VF (m/min) 

Sheet
thickness

(mm)

Gap
(mm)

1 3 2 0 4.0 - 

2 3 2 4 4.0 - 

3 3.5 1.2 7 4.0 0 

4 3.8 1.2 7 4.0 0 

5 3.8 1.2 7 4.0 0.4

6 2.6 2 7 2.0 0 

 

 
 
Fig. 1. The sketch of laser welding with filling wire. 

 
 
Fig. 2. The vertical and cross section of bead with different welding procedures (see Table 3). 
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referred to as gas cavity. The second category is comprised of 
small and spherical (Fig. 3(c)) beads also known as hydrogen 
pore. A crystal growth step can be clearly observed in the wall 
of the gas cavity (Fig. 3(d)), indicating that gas cavity forma-
tion just ahead of the solidification of the molten pool. Fur-
thermore, rapid oscillation also occurred inside the gas cavity 
during its growth. In other words, the formation of gas cavity 
can be attributed to the instability of the keyhole and the oscil-
lation of the molten pool. Note that the growth step as observed 
inside gas cavity did not manifest inside the small hydrogen 
pore (Fig. 3(c)). Thus, we can conclude that the formation me-
chanism of the hydrogen pore is different from that of the gas 
cavity. It has been generally acknowledged that the formation 
of a hydrogen pore can be attributed to the precipitation of 
hydrogen because hydrogen solubility in aluminum greatly 
varies between solid and liquid states. Meanwhile, tips of den-
drites appeared round due to the compressive stress of hydro-
gen gas in the pore (Fig. 3(e)). 
 
3.3 Formation mechanism of gas cavity 

Fig. 3 illustrates that the hydrogen pore is generally small in 
size; its effect on the mechanical properties can be ignored 
compared with large porosity (gas cavity). For this purpose, we 
only discussed in this paper the formation mechanism of large 
porosity (gas cavity).  

 As mentioned earlier, gas cavity formation is closely related 
to the stability of the keyhole and the oscillation of the molten 
pool. This indicates that factors that improve keyhole stability 
can reduce the quantity of gas cavities in the laser welding for 
5A06 aluminum alloy. In general, the bottom diameter of the 
keyhole gradually decreased because of the reflection of the 
irradiation laser in the wall of the keyhole, and not because of 
the direct irradiation of the laser beam. The tip of the keyhole 
was bent away from the welding direction due to the drag force 
in the liquid metal. Since the tip of the keyhole is so tiny, it can 
be easily closed by the flow of molten metal. Fig 4a shows that 
it became a bubble in the molten pool with the sweep of the 
keyhole. A bubble usually becomes a gas cavity in the weld 
bead because it is often difficult for bubbles to escape from the 
molten pool at high crystallization rates of laser welding.  

In laser welding with filler wire, when the keyhole could not 
penetrate the test plate, the depth of penetration was reduced 
from 3.12 mm (without filler wire) (see No. 1 in Fig. 2) to 
2.78mm (with filler wire) (see No. 2 in Fig. 2). This is because 
a part of the laser beam was used to melt the filler wire; thus, 
the laser energy used to produce a keyhole was lower than laser 
autogenous welding. Based on No.1 and No. 2 in Fig. 2, we 
can also see that more gas cavities were formed by laser weld-
ing with wire filler than by welding without wire filler. This 
could possibly be due to several reasons. First, the wire feeding 
system might not have been absolutely stable; hence, fluctua-
tions of the filler wire in terms of speed and/or feed-in position 
resulted in a fluctuating laser energy used to generate the key-
hole. The penetration depth of the keyhole might have caused 
extra fluctuation by the laser welding with filler wire. Second, 

the filling wire was heated and melted using a laser beam to 
form a globular droplet periodically, and the droplet was peri-
odically transferred to the weld pool. These periodical proc-
esses might have resulted in the disturbance of laser transfer 
and instability of the keyhole and molten pool. Fig. 4 shows the 
role of the filler wire in increasing the probability of the forma-
tion of the cavity.   

In welding a butt joint with a 4.0 mm test plate and a zero-
mm welding gap, the test panel was critically penetrated with a 
3.5 kW laser power. The depth of penetration fluctuated at 
larger scopes, and numerous larger gas cavities were found in 
the vertical section of the weld (see No. 3 in Fig. 2). When the 
laser power was increased to 3.8 kW, fluctuations in the depth 

 
Fig. 3. SEM of gas cavity and hydrogen porosity in the bead. 
 

 
 

Fig. 4. Cavity formation in laser welding on the board without (a) and
with (b) filler wire. 



1080 Y. Yu et al / Journal of Mechanical Science and Technology 24 (5) (2010) 1077~1082 
 

 

of penetration became smaller, and the test panel was com-
pletely penetrated. In addition, the number of gas cavities de-
creased due to the increase in the stability of the keyhole; how-
ever, gas cavities still existed in the bead and were considera-
bly severe (see No. 4 in Fig. 2).The fluctuations of the keyhole 
are at a maximum value in the critical penetration condition, 
which explains the increase in the number of gas cavities in the 
bead. Improvement in the number of gas cavities is also very 
inconspicuous even when the test plate was fully penetrated 
with the 3.8 kW laser. A reason for this is that the fluctuations 
of the keyhole had not been eliminated and the penetration of 
the bead varied (see No. 4 in Fig. 2) despite the test plate hav-
ing been completely penetrated. This is an indication that the 
keyhole did not fully penetrate the molten metal, as exhibited 
in Fig. 5. As a result, the formation mechanism of gas cavities 
under these circumstances is similar to those in a non-
penetrating welding process (see No. 1 and No. 2 in Fig. 2), 
except that the depth of the keyhole is deeper. 

The bead with few gas cavities was obtained when prefabri-
cated to a gap of 0.4 mm for the butt joint of a 4.0 mm sheet 
(see Table 3 and Fig. 2). The penetration of the bead was uni-
form and greater than the thickness of the test panel. All evi-
dence indicates that the gap increased the stability of the 
keyhole. This could be due to several reasons. First, the size of 
the gap is similar to the diameter of the keyhole. Hence, the 
resistance pressure, which has to be overcome to form the key-
hole by the laser beam, is suddenly reduced, a situation favored 
for a steady keyhole. The prefabricated gap can be equivalent 

steady keyhole. The prefabricated gap can be equivalent to an 
artificial keyhole for the laser beam, which is rather difficult to 
close when the power of the laser is sufficient to melt the filler 
wire, thereby reducing the probability of entrapped shielding 
gas. Second, the gap can provide a natural passage for the flow 
of liquid metal, which can weaken and even completely elimi-
nate the disturbance of the keyhole and molten metal coming 
from the metal transfer of the filler wire. Third, it is empty in 
the leading end of the keyhole except for a thin liquid metal, 
which is a product of the molten wire and the base metal; this 
could provide an extra passage for the escape of bubbles form-
ing in the molten pool (Fig. 6). 

A weld bead without gas cavity was obtained, and the depth 
of penetration was uniform when the thickness of the test pan-
el was reduced to 2 mm (see Table 3 and Fig. 2). The macro-
graph of the bead is rather good for both sides. Nevertheless, 
some small spatters reflected by the metallic vapor jet were 
observed at the back of the sample (Fig. 7), indicating that the 
keyhole of the laser welding completely penetrated through 
the melting metal. The small spatter is the splash reflected by 
the metallic vapor jet from the bottom of the protection groove 
(Fig. 8). Therefore, it is reasonable to attribute gas cavity eli-
minations in laser butt welding of the keyhole (i.e., for the 2 
mm board with filler wire) to the body-sized hole. In such 
cases, closing the keyhole is almost impossible, and the metal-
lic vapor jet can disrupt both the top and bottom part of key-
hole. Therefore, the formation factors (i.e., metal vapor to-
gether with the swirled shielding gas and air) for the large 
porosities were all removed. 

Based on the above mentioned analysis, we can conclude 
that the elimination of a gas cavity in a laser-welding alumi-
num alloy with filler wire is more difficult because the filler 

 
Fig. 7. Macrograph of laser butt welding 2mm 5A06 aluminum alloy
with filling wire (detailed welding procedures are shown in Table 3).

 

 
 
Fig. 8. Gas cavity eliminations in laser butt welding 2 mm board with
filler wire. 

 
 
Fig. 5. Gas cavity formation in laser welding with filler wire (the depth
of penetration exceed the thickness of test plate). 

 

                (a) Vertical section                            (b) Cross section 
 
Fig. 6. Gas cavity eliminations in laser butt welding with a gap of 0.4
mm. 
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wire can disrupt the stability of the keyhole. A weld bead 
without gas cavity can be obtained when the thickness of the 
test panel is small or if the power of the laser is sufficient to 
form a keyhole with stable penetration through the test panel. 
In addition, an appropriate gap can increase the stability of the 
keyhole, which can also decrease probability of forming a gas 
cavity. 
 

4. Conclusions 
(1) Gas cavity formation is closely related to the stability 

of the keyhole and fluctuations in the molten pool. 
The filling wire in laser welding aluminum alloy can 
increase the probability of gas cavity formation be-
cause the filling wire can disturb the stability of the 
keyhole and cause fluctuations in the molten pool.  

(2) In laser welding with wire filling, pre-fabricating a 
suitable gap for the butt joint can greatly decrease sus-
ceptibility to gas cavities (large porosities). This indi-
cates that the gap can increase the stability of the key-
hole and weld pool, which then contributes to the gap 
assisting in the formation of the keyhole. Moreover, it 
can also provide a passage through which the bubbles 
can escape and as a natural flowing passage of the liq-
uid metal.  

(3) In laser welding with wire filling, when the power of 
the laser is sufficient to form a keyhole with stable 
penetration though the test panel, a weld bead without 
gas cavity can be obtained because closing the key-
hole is almost impossible. 

 
Acknowledgment 

This work was supported by the Aviation Science Funds 
and National 973 Program, in China. 

 
References 

[1] A. F. M. Arif, Effect of input variability on the quality of 
laser shock processing, Journal of Mechanical Science and 
Technology, 23 (10) (2009) 2603-2611. 

[2] Z. L. Lu, J. H. Liu, Y. S. Si, and C. Z. Y, Characteristics of 
complicated AISI316L automobile components manufac-
tured by powder/metallurgy, Journal of Mechanical Science 
and Technology, 23(7) (2009) 1924-1931. 

[3] L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar and 
C. J. Kong, Welding with high power fiber lasers-A prelimi-
nary study, Materials and Design, 28 (2007) 1231-1237. 

[4] T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, 
P. M. Lugara, A study of the shielding gas influence on the 
laser beam welding of AA5083 aluminium alloys by in-
process spectroscopic investigation, Optics and Lasers in 
Engineering, 44 (2006) 1039-1051. 

[5] L.Yu, K. Nakata and J. Liao, Weld porosity in fibre laser 
weld of thixomolded heat resistant Mg alloys, Science and 
Technology of Welding and Joining, 14 (6) (2009) 554-558. 

[6] J. Zhou and H. L. Tsai, Porosity formation and prevention in 
pulsed laser welding, Journal of Heat Transfer, 129 (8) 
(2007) 1014-1024. 

[7] I. Kawaguchi, S. Tsukamoto, G. Arakane and K. Nakata, 
Suppression of porosity by laser power modulation - Study 
on prevention of porosity in high power CO2 laser welding 
(report 3), Yosetsu Gakkai Ronbunshu/Quarterly Journal of 
the Japan Welding Society, 25 (2) (2007) 328-335. 

[8] I. Kawaguchi, S. Tsukamoto, G. Arakane and H. Honda, 
Characteristics of high power CO2 laser welding and poros-
ity suppression mechanism by nitrogen shield - Study on 
high power laser welding phenomena- (report 1), Yosetsu 
Gakkai Ronbunshu/Quarterly Journal of the Japan Welding 
Society, 23(2) (2005) 259-264. 

[9] L. M. Liu, G. Song, G. L. Liang and J. F. Wang, Pore forma-
tion during hybrid laser-tungsten inert gas arc welding of 
magnesium alloy AZ31B—mechanism and remedy, Materi-
als Science and Engineering, A 390 (2005) 76-80. 

[10]   A. Haboudou, P. Peyre, A. B. Vannes and G. Peix, Reduc-
tion of porosity content generated during Nd:YAG laser 
welding of A356 and AA5083 aluminium alloys, Materials 
Science and Engineering, A 363 (2003) 40-52. 

[11]   T. Hayashi, K. Matsubayashi, S. Katayama, N. Abe, A. 
Matsunawa and A. Ohmori, Reduction mechanism of poros-
ity in tandem twin-spot laser welding of stainless steel, Yo-
setsu Gakkai Ronbunshu/Quarterly Journal of the Japan 
Welding Society, 20(2) (2002) 228-236. 

[12]   N. Seto, S. Katayama and A. Matsunawa, Porosity forma-
tion mechanism and reduction method in CO2 laser welding 
of stainless steel, Welding International, 16 (6) (2002) 451-
460. 

[13]   M. Kutsuna, Q. Yan, Study on porosity formation in laser 
welds of aluminium alloys, IIW-doc IV-683-97. 

[14]   A. Matsunawa, J. D. Kim and S. Katayama, Porosity for-
mation in laser welding―mechanisms and suppression 
methods, Proc. ICALEO '97, LIA., (1997) 73-82. 

[15]   A. Matsunawa, N. Seto, J. D. Kim, M. Mizutania and S. 
Katayama, Dynamics of keyhole and molten pool in high 
power CO2 laser welding, Proceedings of SPIE., 3888 
(2000) 34-45. 

[16]   J. W. Yoon, Y. S. Lee, K. D. Lee and K. Y. Park, Effect of 
filler wire composition on Nd:YAG laser weld ability of 
6061 aluminum alloy. Materials Science Forum, 475-
479(2005) 2591-2594. 

[17]   T. Jokinen and V. P. Kujanpää, High power Nd:YAG laser 
welding in manufacturing of vacuum vessel of fusion reactor, 
Fusion Engineering and Design, 69 (2003) 349-353. 

[18]   A. S. Salminen and V. P. Kujanpää, Effect of wire feed 
position on laser welding with filler wire, Journal of Laser 
Applications, 15 (1) (2003) 2-10. 

[19]   A. S. Salminen, Effects of filler wire feed on the efficiency 
of laser welding. First International Symposium on High-
Power Laser Macro-processing, Proceedings of SPIE., 4831 
(2003) 263-268. 

[20]   Z. Sun and M. Kuo, Bridging the joint gap with wire feed 



1082 Y. Yu et al / Journal of Mechanical Science and Technology 24 (5) (2010) 1077~1082 
 

 

laser welding, Journal of Materials Processing Technology, 
87 (1999) 213-222. 

[21]   C. Schinzelt, B. Hohenberger, F. Dausinger and H. Hugel, 
Laser welding of aluminum extended processing potential 
by different wire positions, In High-Power Lasers in Manu-
facturing, Proceedings of SPIE., 3888 (2000) 380-391. 

 
Yang-chun Yu received his M.A. de-
gree in Material Processing Engineering 
from Huazhong University of Science 
and Technology (HUST), China, in 
2004. He is currently studying for a PhD 
at the School of Materials Science and 
Engineering at HUST in Wuhan, China. 
His research interests main in laser ma-

terials processing.  
 

Chun-ming Wang is an associate pro-
fessor at the School of Materials Sci-
ence and Engineering, Huazhong Uni-
versity of Science and Technology 
(HUST), China. His research interest is 
laser materials processing. At least 15 
of his papers have already published. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


